OpenMP* GPU Offload Basics

intel.

*QOther names and brands may be claimed as the property of others.

Objectives

» Tolearnthe basic OpenMP* offload constructs to deploy OpenMP application for
execution on GPUs

= Prerequisites

» Knowledge of using OpenMP with Fortran, C or C++ on CPUs

intel.

2

Agenda

oneAP| and OpenMP* Offload
OpenMP on CPUs Review
Introduction to OpenMP Offload
Constructs to Manage Device Data
Constructs to Leverage Parallelism
Case Study

Summary

intel.

3

oneAP| and OpenMP* Offload

=

intel.

*QOther names and brands may be claimed as the property of others.

Programming Challenges

for Multiple Architectures

Growth in specialized workloads
Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Application Workloads Need Diverse Hardware

[[[[[
[o [
[o [
[o [
O0oo0od

Scalar Vector Spatial Matrix

Middleware & Frameworks

CPU GPU FPGA Other accel.
programming programming programming programming
model model model models

Other accel.

intel.

oneAP|

One Programming Model for Multiple
Architectures and Vendors

Freedom to Make Your Best Choice

Choose the best accelerated technology the software
doesn'’t decide for you

Realize all the Hardware Value

Performance across CPU, GPUs, FPGASs, and other
accelerators

Develop & Deploy Software with Peace of Mind

Open industry standards provide a safe, clear path to the
future

Compatible with existing languages and programming

models including C++, Python, SYCL, OpenMP, Fortran, and

MPI

Application Workloads Need Diverse Hardware

A m e &8

Scalar Vector Spatial Matrix

Middleware & Frameworks

Industry Intel
Initiative Product

oneAPI

Other accel.

intel.

6

ntel” oneAPI

Product

Built on Intel’s Rich Heritage of CPU
Tools Expanded to XPUs

A complete set of advanced compilers, libraries, and
porting, analysis and debugger tools

= Accelerates compute by exploiting cutting-edge
hardware features

= |nteroperable with existing programming models and
code bases (C++, Fortran, Python, OpenMP, etc.),
developers can be confident that existing applications
work seamlessly with one AP

» Easestransitions to new systems and accelerators—
using a single code base frees developers to invest
more time on innovation

Visit software.intel.com/oneapi for more details

Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

Application Workloads Need Diverse Hardware

Middleware & Frameworks

F TensorFlow PyTorch @xnet @ ﬁ:i:NumPy X.. ©penVIN®

_1 Intel® oneAPI Product
oneAPI

Analysis & Debug

Compatibility Tool Languages Libraries Tools

Low-Level Hardware Interface

Available Now

intel.

file:///E:/IHI Creative Dropbox/Jay Jaime/Intel/OneAPI/Gold Deck/Assets/Copy Assets/software.intel.com/oneapi
software.intel.com/oneapi

INntel® one API| Toolkits

A complete set of proven developer tools expanded from CPU to XPU

oneAPI

Intel®” oneAPI Base Toolkit

Native Code Developers
A core set of high-performance tools for building C++, Data Parallel C++ applications & oneAPI library-based applications

=

Intel® oneAPI Tools for HPC - Intel® oneAPI Tools for loT

Deliver fast Fortran, OpenMP & MPI ongAPT oot Build efficient, reliable solutions that
applications that scale run at network’s edge

Add-on Domain-

specific Toolkits _
intel. Intel® oneAPI Al Analytics Toolkit & Intel® oneAPI Rendering

Specialized Workloads 1 Ravrmes Accelerate machine learning & data science 1 revoeme Toolkit

TOOLKIT
pipelines with optimized DL frameworks & oneART Create performant, high-fidelity

high-performing Python libraries visualization applications

oneAPI TOOLKIT

TOOI klt . Intel® Distribution of OpenVINO™ Toolkit
powered by OneAPI @penV|N© Deploy high performance inference & applications

fr dge to cloud
Data Scientists & Al Developers Ny

intel.

8

Intel® oneAPI Tools for HPC
Intel” one AP

HPC Toolkit

Deliver Fast Applications that Scale
What is it?

A toolkit that adds to the Intel® one API Base Toolkit for
building high-performance, scalable parallel code on C++,
Fortran, OpenMP & MPI from enterprise to cloud, and HPC to
Al applications.

Who needs this product?

= OEMs/ISVs
= C++ Fortran, OpenMP, MPI Developers

Why is this important?

= Accelerate performance on Intel® Xeon® & Core™
Processors and Intel® Accelerators

= Deliver fast, scalable, reliable parallel code with less effort
built on industry standards

Learn More: intel.com/oneAPI-HPCKit

Intel® one API Base & HPC Toolkits

Direct Programming

Intel® C++ Compiler Classic

Intel® Fortran Compiler Classic

Intel® Fortran Compiler
(Beta)

Intel® one APl DPC++/C++
Compiler

Intel® DPC++ Compatibility Tool

Intel® Distribution for Python

Intel® FPGA Add-on
for oneAP| Base Toolkit

[l ter® oneAPI HPC Toolkit +
. Intel® one API Base Toolkit

API-Based Programming

Intel® MPI Library

Intel® oneAPI DPC++ Library
oneDPL

Intel® one API Math Kernel
Library - oneMKL

Intel® oneAPI Data Analytics
Library - oneDAL

Intel® oneAPI Threading
Building Blocks - one TBB

Intel® oneAPI Video Processing
Library - oneVPL

Intel® oneAPI Collective
Communications Library
oneCCL

Intel® oneAPI Deep Neural
Network Library - oneDNN

Intel® Integrated Performance
Primitives — Intel® IPP

Analysis & debug Tools

Intel® Inspector

Intel® Trace Analyzer
& Collector

Intel® Cluster Checker

Intel® VTune™ Profiler

Intel® Advisor

Intel® Distribution for GDB

1 HPC
TOOLKIT
oneAPI

intel.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

OpenMP* on CPUs

intel.

*QOther names and brands may be claimed as the property of others.

OpenMP* Overview

» Cross-platform standard supporting shared-memory-multi-processing
orogramming in C, C++ and Fortran

= APl for writing multithreaded applications

= Set of compiler directives and library routines for parallel application
programmers

= Greatly simplifies writing multi-threaded programs in Fortran, C and C++
= Portable across vendors and platforms

= Supports various types of parallelism

intel.

OpenMP* History

m [99/:Version 1.0 for Fortran
= 1998: Version 1.0 for C/C++
2002-2005: Versions 2.0-2.5, Merger of Fortran and C/C++ specifications

2008: Version 3.0, Incorporates Task Parallelism

= 2013: Version 4.0, Support for Accelerators, SIMD support
= 2018: Version 5.0, C11/C++17/Fortran 2008 support

intel. »

OpenMP* Threads

» Create threads with the parallel construct

#include <omp.h>

void saxpy()
{
float a, x[ARRAY_SZ], y[ARRAY_SZ];
#pragma omp parallel
{
int id=omp get thread num();
int nthrs=omp_get num_threads();
for (int i=id; i < ARRAY_SZ; i+=nthrs) {
yl[i] = a * x[i] + y[i];
}

Parallel Region.

Team of threads
created.

Each thread
executes the same
code redundantly

Thread
Master Thread

intel.

13

Loops
= Use For/Do Loop Directive to Workshare

#include <omp.h>

void saxpy()

{
float a, X[ARRAY SZ], y[ARRAY SZ];
#pragma omp parallel GRS EIE
{ Distributes the
#pragma omp for execution of
for (int i=0; i < ARRAY_SZ; i++) { loop iterations
y[i] = a * x[1] + y[i]; across the
} threads
}
}

Thread
Master Thread

intel.

14

Basic Examples

C/C++ Fortran

#include <omp.h> program main
use omp_lib

#pragma omp parallel for reduction (+:sum) I$omp parallel do reduction (+:total)
{ do i=0,ARRAY_SZ
for (int i=0; i<ARRAY_SZ; i++) { total = total + x(i)
sum += x[1i]; end do
} I$omp end parallel do
}

end program main

intel. ©

Other Notable OpenMP* Constructs

» Sections/Section

= Distribute blocks of code (sections) among existing threads
= [ask

= Create independent units of work (including code, data, and internal control variables) for
execution on a thread

= SIMD

= Specifies iterations of a given loop can be executed concurrently with SIMD instructions

= j.e.compiler canignore vector dependencies

intel. 1

Introduction: OpenMP* Offloaad

=

intel.

*QOther names and brands may be claimed as the property of others.

OpenMP* Device Model

= OpenMP 4.0+ supports accelerators/coprocessors (devices)
= Not GPU-specific

= Device model:
= One host

= Multiple accelerators/coprocessors of the same kind

intel.

OpenMP* Offload Compiler Support

» OpenMP Offload Supported in the Intel® one APl HPC Toolkit

= Need to enable OpenMP* 4.5 support (-fiopenmp) and OpenMP* 4.5 offloading
support (-fopenmp-targets=spir64)

= |ntel® oneAPI C++ Compiler

icx -fiopenmp -fopenmp-targets=spir64 <source>.c

icpx -fiopenmp -fopenmp-targets=spiré4 <source>.cpp
" |ntel® Fortran Compiler

ifx -fiopenmp -fopenmp-targets=spir64 <source>.f90

intel. ©

OpenMP* 4.0 for Devices - Constructs

target construct transfer control and data from the host to the device

Syntax (C/C++)
#pragma omp target [clause[[,] clause],..]
structured-block

Syntax (Fortran)

I$omp target [clause[[,] clause],..]
structured-block

I$omp end target

Clauses

device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] List)
if(scalar-expr)

intel. 20

—xecution Mode|

* The target construct transfers the control flow to the target device

= [ransfer of control is sequential and synchronous
» [hetransfer clauses control direction of data flow

= Array notation is used to describe array length

intel. 2

Target Region Example: saxpy

void saxpy() {
r float a, x[ARRAY SZ], y[ARRAY SZ];
Sequential Host Code < double t = 0.0;
double tb, te;
tb = omp _get wtime();
#pragma omp target

for (int 1 = @; i < ARRAY_SZ; i++) { Y
Target Region < y[i] = a * x[1i] + y[i]; L(a;
N } -

g te = omp_get_wtime(); -

t = te - tb;

Sequential Host Code <
printf("Time of kernel: %1f\n", t);

icx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.c

intel. 22

Device Clause

= Specify which device to offload to in a multi-device environment
#pragma omp target device(i)
= Device number an integer
= Assignment is implementation-specific
» Usually start at O and sequentially increments

= Works with target, target data, target enter/exit data, target
update directives

intel. 23

Calling Functions Inside Target Area

» declare target construct compiles a version of the
function/subroutine for the target device

* Function compiled for both host execution and target execution by default

#pragma omp declare target subroutine devicefunc()
int devicefunc(){ I$omp declare target device type(device)

} end subroutine Optional device_type specifies
#pragma omp end declare target host and/or device execution

program main

if device is specified, it needs to
#pragma omp target I$omp target be always available
{ call devicefunc
result = devicefunc(); I$omp end target
} end program

intel. 24

Managing Device Data

=

intel.

Offload Data

» Host and devices have separate memory spaces

= Data needs to be mapped to the target device in order to be accessed inside the
target region

= Default for variables accessed inside the target region:
= Scalars: treated as firstprivate

= Static arrays: copied to and from the device on entry and exit

= Data environmentis lexically scoped
= Data environment is destroyed at closing curly brace

= Allocated buffers/data are automatically released

intel. 26

Example: saxpy

The compiler identifies variables that

are usedinthe target region.

void saxpy() {

float a, X[ARRAY_SZ],(y[ARRAY_SZ]; All accessed arrays are copied

double t = 0.0; from host to device and back

. d

double tb, te; . X[0:ARRAY_S7]

tb = omp_get_wtime(); y[@:ARRAY_SZ]
#pragma omp target

for (int i = @; i < ARRAY_SZ; i++) { Q|

a * x[i] + y[i]; S
} ‘ —
te = omp_get wtime(); x[©:ARRAY_SZ]
t = te - tb; y[0:ARRAY_SZ]

printf("Time of kernel: %1f\n", t);

Copying x back is not
necessary: it was not changed.

icx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.c

intel. 27

Example: saxpy

The compiler identifies variables that
are used inthe target region.

subroutine saxpy(a, x, y, n)
use iso_fortran_env All accessed arrays are copied
integer :: n, 1 from host to device and back
real(kind=real32) :
real(kind=real32), d1men51on n)

real (kind= realBZ),(@EEEF;Ion{n) :::::)

I$omp target
do i=1,n

a * x(1) + y(i) ——
end do y(1:n)

I$omp end target
end subroutine

1obiey ¥

Copying x back is not
necessary: it was not changed.

ifx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.f90

intel. 28

Map Clause

= Use map clause to manually determine how an original variable in a data

environment is mapped to a corresponding variable in a device data
environment

= omp target map (map-type: List)
= Available map-type

= alloc: allocate storage for variable on target device (values not copied)
* t0:alloc and assign value of original variable on target region entry
= from: alloc and assign value to original variable on target region exit

= tofrom: default, both to and from

intel. 2

Map Clause

= Use map clause to manually determine how an original variable in a data
environment is mapped to a corresponding variable in a device data
environment

Device

D...
aidk
P

intel. =0

Example: saxpy

void saxpy() {
double a, x[ARRAY_SZ], y[ARRAY_SZ];
double t = 0.0;

. d
double tb, te; x[0:ARRAY_SZ]
tb = omp_get wtime(); y[©:ARRAY SZ]

#pragma omp target map(to:x) \

map (tofrom:y) &
for (int i = @; i < ARRAY_SZ; i++) { =
y[i] = a * x[i] + y[i]; 4 a
} y[@:ARRAY_SZ]
te = omp_get wtime();
t = te - tb;

Unnecessary to copy x back to the host

printf("Time of kernel: %1f\n", t);
}

icx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.c

intel. 3

Mapping Dynamically Allocated Data

* \When pointers are dynamically allocated, number of elements to be
mapped must be explicitly specified

#pragma omp target map(to:array[start:length])
I$omp target map(to:array(start:end))

= Partial array may be specified

= Note: syntax in C/C++ (uses length) is different from Fortran (uses end)

intel. =2

Example: saxpy

The compiler cannot determine the
size of memory behind the pointer.

void saxpy(float a, float* x,
int sz) {
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target map(to:x[0:sz]) \

map(tofrom:y[0@:sz]) o
for (int i = @; i < sz; i++) { o
(y[i13 a * x[i] + y[il; s
}
te = omp _get wtime();
t = te - tb;
printf("Time of kernel: %1f\n", t);
} Programmers must help the compiler
with the size of the data transfer
icx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.c needed.

intel.

33

Minimize Data Copy Across Target Regions

= Use target data, target enter data, andtarget exit data

to form target data region and optimize sharing of data between host
and device

= Maps variables, code execution not offloaded
= Variables remain on device for duration of the target data region

= target update construct cancopy values between host and device

intel. 34

target data Construct Syntax

» Create scoped data environment and transfer data from the host to the device and back

= Syntax (C/C++)
#pragma omp target data [clause[[,] clause],..]
structured-block

= Syntax (Fortran)
I$omp target data [clause[[,] clause],..]
structured-block
I$omp end target data

= Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] Llist)
if(scalar-expr)

intel. 35

Target Data Example

= Use target data construct to create target data environment

{

array x is mapped

#pragma omp target map(to: y)

{
...//1st target region, device operations on x and y
}
host_update(y); y must be mapped at each target region since
#pragma omp target map(to: y) it's updated by the host here
{
...//2nd target region, device operations on x and y
}

intel. 3¢

target update Construct Syntax

" |ssue data transfers to or from existing data device environment

= Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

Syntax (Fortran)
l$omp target update [clause[[,] clause],..]

Clauses
device(scalar-integer-expression)
to(Llist)
from(List)
if(scalar-expr)

intel. 3

Target Enter/Exit Data and Update Example

= Usetarget enter/exit data tomap to/from target data environment

= Use target update tomaintain consistency between host and device

#pragma omp target enter data map(to: y) map(alloc: x) Unstructured mapping, data
#pragma omp target environment can span multiple

{ ...//1st target region, device operations on x and y functions
}

#pragma omp target update from(y)

host_update(y); y must be updated from and to the device
#pragma omp target update to(y) since it's updated by the host here
#pragma omp target

{ ...//2nd target region, device operations on x and y

}

#pragma omp target exit data map(from:x)

intel. 38

Map Global Variable to Device

» Usedeclare target constructforto map variables to the device for

the duration of the program

#pragma omp declare target
int a[N]
#pragma omp end declare target

init(a);
#pragma omp target update to(a)

#pragma omp target teams\
distribute parallel for
for (int 1=0; i<N; i++){

result[i] = process(a[i]);

¥

module my_ arrays

I$omp declare target (a)
integer :: a(N)

end module

use my_arrays
integer :: 1
call init(a);
I$omp target update to(a)

I$omp target teams distribute &
I $omp& parallel do
do i=1,N

result(i) =
process(a(i));
end do

intel.

39

Unified Shared Memory

* Single address space for CPU and GPU

= Data migration among CPU and GPUs transparent to the application

= Explicit mapping of data not required

Accessible From Allocation Routine

Host Host Host or Device omp_target_alloc_host(size, device_num)
Device Device Device omp_target_alloc_device(size, device_num)
Shared Host or Device Host or Device omp_target_alloc_shared(size, device_num)

» Use Shared or Host memory for implicit data movement to achieve
ease of coding

= Use Device memory for explicit data movement to achieve maximum
performance

intel.

40

Unified Shared Memory (Implicit) Example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define SIZE 1024
#pragma omp requires unified shared memory
int main() {
int deviceId = (omp_get num devices() > 0) ?
omp_get default device() : omp get initial device();
int *a = (int *)omp target alloc shared(SIZE * sizeof (int) , deviceld);
int *b = (int *)omp target alloc shared(SIZE * sizeof (int) , deviceld);
for (int i = 0; i < SIZE; i++) {

a[i] = i; b[i] = SIZE - i;
}
#pragma omp target teams distribute parallel for :
s s A 08 A 2 e A | P USM support via managed
| SIT += LAl memory allocator

for (int i = 0; 1 < SIZE; i++) {
if (a[i] '= SIZE) {
printf ("%$s failed\n", _ func_);
return EXIT FAILURE;

}
}

omp target free(a, deviceld);
omp target free (b, deviceld);
printf ("%s passed\n", _ func_)’
return EXIT SUCCESS;

}

intel.

Unified Shared Memory (Explicit) Example

;nt main () {

int deviceIlId = (omp_get num devices() > 0) ? omp_get default device() : omp get initial device();
int *a = (int *)malloc(SIZE * sizeof(int)); int *b = (int *)malloc(SIZE * sizeof (int));
for (int 1 = 0; i < SIZE; i++) {
af[i] = i; b[i] = SIZE - i;
}
int *a dev = (int *)omp target alloc device (SIZE * sizeof(int) , deviceld);
int *b dev = (int *)omp target alloc device (SIZE * sizeof(int) , deviceld);

int error=omp target memcpy(a dev, a, SIZE*sizeof(int), 0, 0, devicelId, 0);
error=omp target memcpy (b dev, b, SIZE*sizeof(int), 0, 0, deviceld, 0);

#pragma omp target teams distribute parallel for . .
for (int i = 0; i < SIZE; i++) { EXp|ICIt Data Movement

, S Rl from Host to Device
error=omp target memcpy(a, a dev, SIZE*sizeof(int), O, 0, 0, deviceld);
error=omp target memcpy (b, b dev, SIZE*sizeof(int), 0, 0, 0, deviceld);

for (int i = 0; i < SIZE; i++) { . .

if (a[i] '= SIZE) { printf("%$s failed\n", _ func_); return EXIT FAILURE; }} EXphCIt Data Movement
omp target free(a dev, deviceld); from Device to HOSt
omp_ target free(b_dev, devicelId);

free(a); free(b);
printf ("%$s passed\n", _ func_);
return EXIT SUCCESS;

}

intel.

Parallelism

=

intel.

Creating Parallelism on the Target Device

» The target construct transfersthe control flow to the target device

= [ransfer of control is sequential and synchronous

» OpenMP* separates offload and parallelism
= Programmers need to explicitly create parallel regions on the target device
= |ntheory, this can be combined with any OpenMP construct

* |n practice, thereis only a useful subset of OpenMP for a target device
(more later)

intel. 44

GPU Architecture

. \
X® Subslice
Thread
Xe EU \ I3 Dispatch

Thread Control

Register File

£ <o IssuePort0 IssuePort1 - - -
c c
E A INT

gl)

a0
bl

ra! | —

TEIIRI &1 S ===

[@] ||E| g

ol eE! f

—r O Ow

L1$ Tex$ SLM
0 o — | o—

intel. 45

OpenMP* GPU Offload and OpenMP Constructs

= OpenMP GPU offload support all “normal” OpenMP constructs
= E.g.parallel, for/do, barrier, sections, tasks, etc.

= Not every construct will be useful

» Fullthreading model outside of a single GPU subslice not supported
= No synchronization among subslices

= No coherence and memory fence between among subslice L1 caches

intel. 4

Example: saxpy

= Onthe device, the parallel construct creates a team of threads to be
executed on one subslice or stream multiprocessor

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[@:sz])
#pragma omp parallel for simd
for (int i = 0; i < sz; i++) {
} yl[i] = a * x[i] + y[i];

icx -fiopenmp -fopenmp-targets=spir64 -o saxpy saxpy.c

GPUs are multi-level devices:
SIMD, threads, thread blocks

Create a team of threads to execute the loop
in parallel and SIMDify.
Only one GPU subslice utilized, GPU
significantly underutilized

intel. 4

Teams Construct

= Creates multiple master threads, effectively creates a set of thread teams (league)

= Synchronization does not apply across teams.

- [)e\/lce%\

Thread
Master Thread

Team

Team

Team

L

Team

omp target

omp teams

omp parallel

intel.

48

Teams Construct

Support multi-level parallel devices
Syntax (C/C++):

#pragma omp teams [clause[[,] clause],..]
structured-block

Syntax (Fortran):

I$omp teams [clause[[,] clause],..]
structured-block

Clauses

num_teams(integer-expression), thread limit(integer-expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), reduction(operator:Llist)

intel.

49

Distribute Construct

» distribute construct distributes iterations of a loop across the
different teams

= Worksharing within a league

= Nested inside a teams region

= Can specify distribution schedule

= Similar to for/do construct for parallel regions

= Syntax
= #pragma omp distribute [clause[[,] clause]..]
» |$omp distribute [clause[[,] clause]..]

intel. ©0

Distribute Diagram

Thread
Master Thread

Target Device

Team

o

Team

Team

Team

omp

omp
omp

omp
omp

omp

target

teams
distribute

parallel
for/do

simd

intel.

51

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target map(to:x[0:sz]) map(tofrom(y[©:sz])

{
{
for (ib = 0; ib < sz; ib += num_blocks) {
for (int i = ib; i < ib + num_blocks; i++) {
yl[i] = a * x[i] + y[i];
yor oy o+ o}

intel. &2

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target map(to:x[0:sz]) map(tofrom(y[©:sz])

{
#pragma omp teams num_teams(num_blocks)
{
TR B LY
l l all do the same l l
NN N ‘s"*‘ N || N d‘ N ||) “‘ N II \"*‘ 'y N NN
for (int i = ib; i < ib + num_blocks; i++) {
yl[i] = a * x[i] + y[i];
yor oy o+ o}

intel. =3

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target map(to:x[0:sz]) map(tofrom(y[©:sz])

{
#pragma omp teams num_teams(num_blocks)
{
T L LT
l l all do the same l l
B0 S | I A | YA " RS " R " B AU | I AN | I A
W I e o
l l workshare (w/o barrier) l l
LLLL Ll " N " N " N " N " A R | A RN
for (int i = ib; i < ib + num_blocks; i++) {
y[i] = a * x[i] + y[i];
Yoy oy o} 3

intel. 54

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target map(to:x[0:sz]) map(tofrom(y[©:sz])

{
#pragma omp teams num_teams(num_blocks)
{
T L LT
l l all do the same l l
N WY N 1) m‘l*‘m‘ " «"“«‘ " «‘d‘m‘ " u’d‘u‘ N YY Ny
W I e o
l l workshare (w/o barrier) l l
B | I A "wdw "cdw "wdw "wdw "w SO | Y
#pragma omp parallel for simd
for (int i = ib; i < ib + num_blocks; i++) {
I"IIIII"IIIII"IIIII-“IIIII"I
”m ”H workshare (w/ barrier) ‘” |H”
| [[[|| o [[
y[i] = a * x[i] + y[i];
Yoy oy o} 3

intel. s

Multi-level Parallel saxpy

» For convenience, OpenMP* defines composite construct to implement
the required code transformation

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams parallel for simd \
num_teams(num_blocks) map(to:x[0:sz]) map(tofrom(y[©:sz])
for (int i = 0; i < sz; i++) {
y[i] = a * x[i] + y[i];

subroutine saxpy(a, X, y, n)

I$omp omp target teams parallel do simd &
I$omp& num_teams(num_blocks) map(to:x) map(tofrom(y)
do i=1,n
y(i) = a * x(i) + y(i)
end do
I$omp end target teams parallel do simd

end subroutine

intel. ¢

Complete Saxpy Example

void example() {
float tmp[N], data _in[N], float data out[N];
#pragma omp target data map(alloc:tmp[:N]) \
map(to:a[:N],b[:N]) \
map(tofrom:c[:N]) {
zeros(tmp, N);
compute kernel 1(tmp, a);
saxpy(2.0f, tmp, b);
compute kernel 2(tmp, b);
saxpy(2.0f, c, tmp);

void zeros(float* a, int n) {

#pragma omp target teams distribute parallel for

for (int 1 = 0; i < n; i++)
a[i] = @.ef;

void saxpy(float a, float* y, float* x, int n) {

#pragma omp target teams distribute parallel for
for (int i = 0; 1 < n; i++)
y[i] = a * x[1i] + y[i];

intel.

57

=

Case Study: NWChem TC

CCS

intel.

D(

)

NWChem

= Computational chemistry software package
= Quantum chemistry
= Molecular dynamics

» Designed for large-scale supercomputers

» Developed at the EMSL at PNNL

= EMSL: Environmental Molecular Sciences Laboratory
= PNNL: Pacific Northern National Lab

= URL: http://www.nwchem-sw.org

intel.

59

Finding Offload Candidates

= Requirements for offload candidates
= Compute-intensive code regions (kernels)
= Highly parallel

= Compute scaling stronger than data transfer,
e.g., compute O(n3) vs. data size O(n2)

" |ntel® Advisor: Offload Advisor can be used to identify candidates

intel. <o

Example Kernel (1 of 27 in total)

1

sub

Dec

double precision triplesx(h3d*h2d,hld,péd,p5d,p4d)

dou
dou

routine offl t _di_1(h3d,h2d,hld,péd,p5d,pld,
h7d,triplesx,t2sub,v2sub)
larations omitted.

ble precision t2sub(h7d,p4d,p5d,hld)
ble precision v2sub(h3d*h2d,p6d,h7d)

I$omp target

I$omp teams dist

1$omp
I$omp

1

do
do
do
do
do
do

triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,hl1,p6,p5,p4)

end
end
end
end
end
end
end
end
end

p4=1, p4d »
p5=1,p5d
p6=1, péd 1.5GB data transferred

hl=1,h1d .
h7=1.h7d (host to device)

h2h3=1,h3d*h2d

- t2sub(h7,p4,p5,hl1)*v2sub(h2h3,p6,h7)
do
d
o 1.5GB data transferred

do (device to host)

do

do

teams dis

target

subroutine

e parallel do

e parallel do private(p4,p5,p6,h2,h3,hl1,h7)

All kernels expose the same structure
/ perfectly nested loops

Some kernels contain inner product loop
(then, 6 perfectly nested loops)

Trip count per loop is equal to “tile size”
(20-30 in production)
Naive data allocation (tile size 24)

= Per-array transfer for each target
construct

= triplesx: 1458 MB
= t2sub, vZ2sub: 2.5MB

intel.

6l

Invoking the Kernels / Data Management

= Simplified pseudo-code » Reduced data

I$omp
C

I $omp

I $omp

I$omp

transfers:

target enter data alloc(triplesx(l:tr_size))

for all tiles n i .
e triplesx:
call zero_triplesx(triplesx
do ... PHESR) Allocate 1.5GB data once, = allocated once

call comm_and_sort(t2sub, v2sub) stays on device.
target data map(to:t2sub(t2_size)) map(to:vZsub(vZ size
if (...)

= always kept on the target
call sd_t _di _1(h3d,h2d,hld, p6®
end if

" t2sub, v2sub:
same for sd t dl1 2 until sd t di1 9

target end data Update 4MB of data for = allocated after comm.

znd do (potentially) multiple kernels.
o ...
Similar structure for sd_t d2_1 until sd _t d2 9, incl. target data
end do
call sum_energy(energy, triplesx)
end do
target exit data release(triplesx(l:size))

d pad,h7,triplesx,t2sub,v2sub)

= kept for (multiple) kernel
iNnvocations

intel.

62

Conclusion

=

intel.

Summary

OpenMP* offload supported by the Intel® C++ Compiler and Intel® Fortran
Compiler as part of the Intel® one API HPC Toolkit

Use the target directive to offload

Use the map clause with target, target data, target enter/exit data
directives to improve data transfer efficiency

Usethe teams/distribute directives fully utilize multiple GPU subslices
Usethe parallel/for/do directiveto use the threads within a GPU subslice

Use the simd directive for optimal simd execution on GPU execution units

intel.

64

Other Topics of Interest

= Using the Intel® Advisor : Offload Advisor to identify areas of code that are
advantageous to offload

* Provides performance speedup projection on accelerators

= Using the Intel® Advisor: Roofline Analysis to visualize hardware-imposed
performance ceilings for the CPU and GPU.

* Provides insights on bottlenecks and optimization steps

intel. ¢

Notices & Disclaimers

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel
technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or
from the OEM or retailer.

The benchmark results reported herein may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and
workloads utilized in the testing, and may not be applicable to any particular user's components, computer system or workloads. The results are not necessarily
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, ORINFRINGEMENT OF ANY PATENT, COPYRIGHT OROTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries
inthe U.S. and other countries. Khronos®is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides
for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

intel.

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

